8.1.1.8.1.1. blueoil.quantizations.binary
¶
8.1.1.8.1.1.1. Module Contents¶
8.1.1.8.1.1.1.1. Functions¶
|
Binary channel wise mean scaling quantizer. |
|
Binary mean scaling quantizer. |
-
blueoil.quantizations.binary.
binary_channel_wise_mean_scaling_quantizer
(backward=None, dtype=tf.float32)¶ Binary channel wise mean scaling quantizer.
This quantization creates a binary channel wise mean scaling quantizer. If backward is provided, this backward will be used in backpropagation.
This method is varient of XNOR-Net 1 weight quantization, the difference from XNOR-Net 1 is backward function.
op_type is
BinaryChannelWiseMeanScalingQuantizer
.Forward is:
\[\begin{split}\begin{align} \bar{\mathbf{x}} & = \frac{1}{n}||\mathbf{X}||_{\ell1} & \text{$\bar{\mathbf{x}}$ is a $c$-channels vector} \\ & & \text{$n$ is number of elements in each channel of $\mathbf{X}$} \\\\ \mathbf{Y} & = \text{sign}\big(\mathbf{X}\big) \times \bar{\mathbf{x}} &\\ \end{align}\end{split}\]Default backward is:
\[\frac{\partial Loss}{\partial \mathbf{X}} = \frac{\partial Loss}{\partial \mathbf{Y}}\]- Parameters
backward (callable) – Be used in backpropagation.
dtype (tf.DType) – Define the data type of args of forward and backward.
- Returns
forward function (grad_func defined).
- Return type
callable
-
blueoil.quantizations.binary.
binary_mean_scaling_quantizer
(backward=None, dtype=tf.float32)¶ Binary mean scaling quantizer.
This quantization creates a binary mean scaling quantizer. If backward is provided, this backward will be used in backpropagation.
This method is DoReFa-Net 2 weight quantization.
op_type is
BinaryMeanScalingQuantizer
.Forward is:
\[\begin{split}\begin{align} \bar{x} & = \frac{1}{N}||\mathbf{X}||_{\ell1} & \text{$\bar{x}$ is a scalar} \\ & & \text{$N$ is number of elements in all channels of $\mathbf{X}$}\\ \mathbf{Y} & = \text{sign}\big(\mathbf{X}\big) \cdot \bar{x} &\\ \end{align}\end{split}\]Default backward is:
\[\frac{\partial Loss}{\partial \mathbf{X}} = \frac{\partial Loss}{\partial \mathbf{Y}}\]- Parameters
backward (callable) – Be used in backpropagation.
dtype (tf.DType) – Define the data type of args of forward and backward.
- Returns
forward function (grad_func defined).
- Return type
callable