8.1.1.7.1.1.2.1. blueoil.networks.classification.base
¶
8.1.1.7.1.1.2.1.1. Module Contents¶
8.1.1.7.1.1.2.1.1.1. Classes¶
base network for classification |
-
class
blueoil.networks.classification.base.
Base
(weight_decay_rate=None, *args, **kwargs)¶ Bases:
blueoil.networks.base.BaseNetwork
base network for classification
This base network is for classification. Every classification’s network class should extend this class.
-
placeholders
(self)¶ Placeholders.
Return placeholders.
- Returns
Placeholders.
- Return type
tf.compat.v1.placeholder
-
inference
(self, images, is_training)¶ inference.
- Parameters
images – images tensor. shape is (batch_num, height, width, channel)
is_training –
-
_weight_decay_loss
(self)¶ L2 weight decay (regularization) loss.
-
loss
(self, softmax, labels)¶ loss.
- Parameters
softmax – softmaxed tensor from base. shape is (batch_num, num_classes)
labels – onehot labels tensor. shape is (batch_num, num_classes)
-
_heatmaps
(self, target_feature_map)¶ Generate heatmap from target feature map.
- Parameters
target_feature_map (Tensor) – Tensor to be generate heatmap. shape is [batch_size, h, w, num_classes].
-
summary
(self, output, labels=None)¶ Summary.
- Parameters
output – tensor from inference.
labels – labels tensor.
-
_calc_top_k
(self, softmax, labels, k)¶ Calculate the mean top k accuracy. In the case that multiple classes are on the top k boundary, the order of the class indices is used to break the tie - lower indices given preference - so that only k predictions are included in the top k.
- Parameters
softmax (Tensor) – class predictions from the softmax. Shape is [batch_size, num_classes].
labels (Tensor) – onehot ground truth labels. Shape is [batch_size, num_classes].
k (Int) – number of top predictions to use.
-
metrics
(self, softmax, labels)¶ metrics.
- Parameters
softmax – probabilities applied softmax. shape is (batch_num, num_classes)
labels – onehot labels tensor. shape is (batch_num, num_classes)
-