8.1.1.7.2.1. blueoil.networks.base
¶
8.1.1.7.2.1.1. Module Contents¶
8.1.1.7.2.1.1.1. Classes¶
Base network. |
-
class
blueoil.networks.base.
BaseNetwork
(is_debug=False, optimizer_class=tf.compat.v1.train.GradientDescentOptimizer, optimizer_kwargs=None, learning_rate_func=None, learning_rate_kwargs=None, classes=(), image_size=(), batch_size=64, data_format='NHWC')¶ Bases:
object
Base network.
This base network is for every task, such as classification, object detection and segmentation. Every sub task’s base network class should extend this class.
- Parameters
is_debug (boolean) – Set True to use debug mode. It will summary some histograms, use small dataset and step size.
optimizer_class (class) – Optimizer using for training.
optimizer_kwargs (dict) – For init optimizer.
learning_rate_func (callable) – Use for changing learning rate. Such as learning rate decay, tf.train.piecewise_constant.
learning_rate_kwargs (dict) – For learning rate function. For example of tf.train.piecewise_constant, {“values”: [5e-5, 1e-5, 5e-6, 1e-6, 5e-7], “boundaries”: [20000, 40000, 60000, 80000]}.
classes (list | tuple) – Classes names list.
image_size (list | tuple) – Image size.
batch_size (list | tuple) – Batch size.
-
abstract
base
(self, images, is_training, *args, **kwargs)¶ Base function contains inference.
- Parameters
images – Input images.
is_training – A flag for if is training.
- Returns
Inference result.
- Return type
tf.Tensor
-
abstract
placeholders
(self)¶ Placeholders.
Return placeholders.
- Returns
Placeholders.
- Return type
tf.compat.v1.placeholder
-
abstract
metrics
(self, output, labels)¶ Metrics.
- Parameters
output – tensor from inference.
labels – labels tensor.
-
summary
(self, output, labels=None)¶ Summary.
- Parameters
output – tensor from inference.
labels – labels tensor.
-
abstract
inference
(self, images, is_training)¶ Inference.
- Parameters
images – images tensor. shape is (batch_num, height, width, channel)
-
abstract
loss
(self, output, labels)¶ Loss.
- Parameters
output – tensor from inference.
labels – labels tensor.
-
optimizer
(self)¶
-
train
(self, loss, optimizer, var_list=[])¶ Train.
- Parameters
loss – loss function of this network.