8.1.1.3.1.14. blueoil.datasets.mscoco
¶
8.1.1.3.1.14.1. Module Contents¶
8.1.1.3.1.14.1.1. Classes¶
Mscoco for segmentation. |
|
MSCOCO for object detection. |
|
“MSCOCO only person class for object detection. |
8.1.1.3.1.14.1.2. Functions¶
|
-
blueoil.datasets.mscoco.
DEFAULT_CLASSES
= ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light', 'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard', 'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush']¶
-
class
blueoil.datasets.mscoco.
MscocoSegmentation
(subset='train', batch_size=10, *args, **kwargs)¶ Bases:
blueoil.datasets.base.SegmentationBase
Mscoco for segmentation.
-
classes
¶
-
num_classes
¶
-
available_subsets
= ['train', 'validation']¶
-
extend_dir
= MSCOCO¶
-
property
num_per_epoch
(self)¶ Returns the number of datas in the data subset.
-
property
coco
(self)¶
-
property
_image_ids
(self)¶ Return all files and gt_boxes list.
-
_label_from_image_id
(self, image_id)¶
-
_image_file_from_image_id
(self, image_id)¶
-
__getitem__
(self, i)¶ Returns the i-th item of the dataset.
-
__len__
(self)¶ returns the number of items in the dataset.
-
-
class
blueoil.datasets.mscoco.
MscocoObjectDetection
(subset='train', *args, **kwargs)¶ Bases:
blueoil.datasets.base.ObjectDetectionBase
MSCOCO for object detection.
images: images numpy array. shape is [batch_size, height, width] labels: gt_boxes numpy array. shape is [batch_size, num_max_boxes, 5(x, y, w, h, class_id)]
-
_cache
¶
-
classes
¶
-
num_classes
¶
-
available_subsets
= ['train', 'validation']¶
-
extend_dir
= MSCOCO¶
-
classmethod
count_max_boxes
(cls)¶ Count max boxes size over all subsets.
-
property
num_max_boxes
(self)¶ Return count max box size of available subsets.
-
property
num_per_epoch
(self)¶ Returns the number of datas in the data subset.
-
property
coco
(self)¶
-
property
_image_ids
(self)¶ Return all files and gt_boxes list.
-
_image_file_from_image_id
(self, image_id)¶
-
coco_category_id_to_lmnet_class_id
(self, cat_id)¶
-
_gt_boxes_from_image_id
(self, image_id)¶ Return gt boxes list ([[x, y, w, h, class_id]]) of a image.
-
_files_and_annotations
(self)¶ Create files and gt_boxes list.
-
_init_files_and_annotations
(self)¶
-
__getitem__
(self, i)¶ Returns the i-th item of the dataset.
-
__len__
(self)¶ returns the number of items in the dataset.
-
-
class
blueoil.datasets.mscoco.
MscocoObjectDetectionPerson
(threshold_size=64 * 64, *args, **kwargs)¶ Bases:
blueoil.datasets.mscoco.MscocoObjectDetection
“MSCOCO only person class for object detection.
images: images numpy array. shape is [batch_size, height, width] labels: gt_boxes numpy array. shape is [batch_size, num_max_boxes, 5(x, y, w, h, class_id)]
-
classes
= ['person']¶
-
num_classes
¶
-
_gt_boxes_from_image_id
(self, image_id)¶ Return gt boxes list ([[x, y, w, h, class_id]]) of a image.
-
property
_image_ids
(self)¶ Return all files which contains person bounding boxes.
-
-
blueoil.datasets.mscoco.
main
()¶